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   Abstract: In this paper we obtain some interesting   Eneström-Kakeya  type theorems 

             concerning the location of zeros of polynomials. Our results extend and generalize Some  

          well known results by putting less restrictive conditions on coefficients of polynomials. 

 

Keywords and Phrases: Bounds, zeros, polynomial. 

Mathematics subject classification: (2002),30C10, 30C15. 

 

 

1.Introduction and statement of results: 

     The following elegant result which is well known in the theory of the 

distribution of the zeros of a polynomial is due to Eneström and Kakeya[6]. 
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degree n,such that  

                                                     ,0....... 011 >≥≥≥≥ − aaaa nn                             (1) 

then all the zeros of P(z) lie in |z|≤1. This is a beautiful  result but it is 

equally limited in scope as the hypothesis is very restrictive. In the 

literature [1,3,5,7,8], there exists some extensions and generalizations of 

Eneström-Kakeya Theorem .     



  Recently Aziz and Zargar[2], relaxed the hypothesis of Theorem A  in 

several ways and proved the following results. 

       Theorem B:   If    01
1

1 ....)( azazazazP n
n

n
n ++++= −
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degree n such that for some k≥1. 

                   0....... 011 >≥≥≥≥ − aaaka nn                                                         (2)         

then P(z) has all its zeros in    |z+k-1|≤k 
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or 

,0....... 0231 >≥≥≥≥ −− aaaa nn     and   ,0....... 1331 >≥≥≥≥ −− aaaa nn if n is even, 

then all the zeros of P(z) lie in the circle  
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Theorem B is an interesting extension of Theorem A. 

  In this paper we shall first present the following extension of  

Theorem C analogous  to Theorem B which among other things include 

Theorem A as a special case. 
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 n≥2 `such that for some k≥1, either  

         0....... 132 >≥≥≥≥ − aaaka nn   and   0....... 0231 >≥≥≥≥ −− aaaa nn ,if n is odd 

or 

        0....... 0231 >≥≥≥≥ −− aaaka nn   and    0....... 1331 >≥≥≥≥ −− aaaa nn , 



if n is even    then all the zeros of P(z) lie in the region  
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 where α, β are the roots of the quadratic 
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Taking 121 −=− kaa nn   and noting that the quadratic z²+2√(k-1)z+k-1=0 has 

two equal roots each is equal to -√(k-1), we get the following: 
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      if n is even.                                                                                                     

then all the zeros of P(z) lie in the circle 
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 Applying  Corollary 1 to  the  polynomial   
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of even degree 2n, we get 

 Corollary 2: if 
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and 0.......)1( 1333122 >≥≥≥≥=− −− bbbbbk nnn  , then all the zeros of P(z) lie in 
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Remark 1: Corollary 2 includes Eneström-Kakeya Theorem (Theorem A) as a 

special case. To see that we take k=1 in corollary 2 and 

                                          ,0....... 133312 ===== −− bbbb nn  

it follows that if 0....... 02222 >≥≥≥≥ − bbbb nn , then all the zeros of 
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   lie in |z|≤1. Replacing z² by z and jj bbyb2    j=0,1,2....,n   it followsthat if  
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  lie in |z|≤1.  which is precisely the conclusion of Eneström-Kakeya 

Theorem. 

Taking   k=2,  in corollary 1 the following result follows ; 

Corollary 3: if 
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 is a polynomial of degree n≥2  such that either  

0.......2 132 >≥≥≥≥ − aaaa nn   and 0.......2 0231 >≥≥≥≥= −− aaaaa nnn ,if n is odd 

or 



0.......2 022 >≥≥≥≥ − aaaa nn       and  0.......2 1331 >≥≥≥≥= −− aaaaa nnn  , 

 if n is even, then all the zeros of P(z) lie in 

                                                                  |z+1|≤2.  

Next we prove the following generalization of Theorem C 

 Theorem 1.2: if 
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and 0.......... 0222231 >≤≤≤≤≥≥≥ −−− aaaaaa nn λλ ,for some integer 
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 The following result is obtained by applying Theorem 1.2 to the polynomial 

P(tz): 

Corollary 4: If 
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                                         2. Proofs  of  the  Theorems 

 

Proof of Theorem 1.1: consider 

F(z)  = (1-z²)P(z) 
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For |z|>1,  we have  
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 Hence all the zeros of F(z)  whose modulus is greater than 1  lie in the 

region 
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But those zeros of F(z)  whose modulus is less than or equal to 1  already 

satisfy the inequality(9).Since all the zeros of P(z) are also the zeros of F(z),  

therefore it follows that all the zeros of P(z)  lie in the region(9). 

Let α and β  be the roots of the quadratic 0)1(12 =−++ − kz
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Proof of Theorem 1.2: Consider 

            F(z)  = (1-z²)P(z) 
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Assuming first that n is even then from  (10), for |z|=1,  we have 
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In case n is odd it can be easily seen that |P(z)|>0  if  (11) holds. Hence all 

those zeros of P(z) whose modulus is greater than 1   lie in the circle 
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But all those zeros of  P(z) whose modulus is less than or equal to  1 already 

satisfy (12). Therefore it follows that all the zeros of  P(z)  lie in the 

circle(12). which proves Theorem(1.2).  
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