ON ENESTRö**M –KAKEYA THEOREM**

B.A.Zargar

bazargar@gmail.com

P.G.Department of Mathematics,University of Kashmir,Srinagar

 Abstract: In this paper we obtain some interesting Eneström-Kakeya type theorems concerning the location of zeros of polynomials. Our results extend and generalize Some well known results by putting less restrictive conditions on coefficients of polynomials.

Keywords and Phrases: Bounds, zeros, polynomial.

Mathematics subject classification: (2002),30C10, 30C15.

1.Introduction and statement of results:

 The following elegant result which is well known in the theory of the distribution of the zeros of a polynomial is due to Eneström and Kakeya[6].

Theorem A: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$, $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ *n* $= a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z +$ $a_{-1}z^{n-1} + ... + a_1z + a_0$, is a polynomial of degree n,such that

$$
a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0,\tag{1}
$$

then all the zeros of $P(z)$ lie in $|z| \leq 1$. This is a beautiful result but it is equally limited in scope as the hypothesis is very restrictive. In the literature [1,3,5,7,8], there exists some extensions and generalizations of Eneström-Kakeya Theorem .

 Recently Aziz and Zargar[2], relaxed the hypothesis of Theorem A in several ways and proved the following results.

Theorem B: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ *n* $= a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z +$ $a_{-1}z^{n-1} + ... + a_1z + a_0$ is a polynomial of degree n such that for some k≥1.

$$
ka_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0 \tag{2}
$$

then P(z) has all its zeros in $|z+k-1| \le k$

Theorem C: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ *n* $= a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z +$ $_{-1}z^{n-1}+....+a_1z+a_0$ is a polynomial of degree n≥2, such that either

$$
a_n \ge a_{n-2} \ge \dots \ge a_3 \ge a_1 > 0
$$
, and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, if n is odd

or

$$
a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0
$$
, and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0$, if n is even,

then all the zeros of P(z) lie in the circle

$$
\left|z + \frac{a_{n-1}}{a_n}\right| \le 1 + \frac{a_{n-1}}{a_n} \tag{3}
$$

Theorem B is an interesting extension of Theorem A.

In this paper we shall first present the following extension of

Theorem C analogous to Theorem B which among other things include Theorem A as a special case.

Theorem 1.1: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ *n* $= a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z +$ $_{-1}z^{n-1}+....+a_1z+a_0$ is a polynomial of degree n≥2 `such that for some k≥1, either

 $ka_n \ge a_{n-2} \ge \ge a_3 \ge a_1 > 0$ and $a_{n-1} \ge a_{n-3} \ge \ge a_2 \ge a_0 > 0$, if n is odd or

$$
ka_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0 \quad \text{and} \quad a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0,
$$

if n is even then all the zeros of $P(z)$ lie in the region

$$
|z + \alpha||z + \beta| \le (k + \frac{a_{n-1}}{a_n})
$$

where α , β are the roots of the quadratic

$$
z^{2} + \frac{a_{n-1}}{a_{n}}z + k - 1 = 0
$$
 (4)

Taking *aⁿ*−¹ = 2*aⁿ k* −1 and noting that the quadratic z²+2√(k-1)z+k-1=0 has two equal roots each is equal to -√(k-1), we get the following:

Corollary 1: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ is a polynomial of degree n≥2 such that for some k≥1, either

$$
ka_n \ge a_{n-2} \ge \dots \ge a_3 \ge a_1 > 0 \text{ and } 2a_n \sqrt{k-1} = a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0, \text{ if n is odd}
$$
\nor

\n(5)

 $ka_{n-1} \ge a_{n-3} \ge \dots \ge 2a_2 \ge a_0 > 0$, and $2a_n \sqrt{k-1} = a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0$,

if n is even.

then all the zeros of P(z) lie in the circle

$$
\left| z + \sqrt{k-1} \right| \le \left(k + 2\sqrt{k-1} \right)^{\frac{1}{2}} \tag{6}
$$

Applying Corollary 1 to the polynomial

$$
F(z) = b_{2n} z^{2n} + b_{2n-1} z^{2n-1} + \dots + b_1 z + b_0,
$$

of even degree 2n, we get

 Corollary 2: if

$$
F(z) = \sum_{j=0}^{2n} b_j z^j
$$

is a polynomial of even degree 2n such that $kb_{2n} \ge b_{2n-2} \ge \ge b_2 \ge b_0 > 0$, and $(k-1)b_{2n} = b_{2n-1} \ge b_{3n-3} \ge \dots \ge b_3 \ge b_1 > 0$, then all the zeros of P(z) lie in

$$
\left|z + \sqrt{k-1}\right| \le \left(k + 2\sqrt{k-1}\right)^{\frac{1}{2}}
$$

Remark 1: Corollary 2 includes Eneström-Kakeya Theorem (Theorem A) as a special case. To see that we take k=1 in corollary 2 and

$$
b_{2n-1} = b_{3n-3} = \dots = b_3 = b_1 = 0,
$$

it follows that if $b_{2n} \ge b_{2n-2} \ge$ *mm*≥ $b_2 \ge b_0 > 0$, then all the zeros of

$$
F(z) = b_{2n}z^{2n} + b_{2n-2}z^{2n-2} + \dots + b_2z^2 + b_0
$$

= $b_{2n}(z^2)^n + b_{2n-2}(z^2)^{n-1} + \dots + b_2(z^2) + b_0$

lie in |z|≤1. Replacing z^2 by z and b_{2j} *by b_j* j=0,1,2....,n it followsthat if

$$
a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0
$$

then all the zeros of

$$
P(z) = \sum_{j=0}^{n} a_j z^j
$$

 lie in |z|≤1. which is precisely the conclusion of Eneström-Kakeya Theorem.

Taking k=2, in corollary 1 the following result follows ;

Corollary 3: if

$$
P(z) = \sum_{j=0}^{n} a_j z^j
$$

is a polynomial of degree n≥2 such that either

 $2a_n \ge a_{n-2} \ge \dots \ge a_3 \ge a_1 > 0$ and $2a_n = a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, if n is odd

or

 $2a_n \ge a_{n-2} \ge \dots \ge a_2 \ge a_0 > 0$ and $2a_n = a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0$,

if n is even, then all the zeros of P(z) lie in

|z+1|≤2.

Next we prove the following generalization of Theorem C

 Theorem 1.2: if

$$
P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_{2\lambda} z^{2\lambda} + \dots + a_1 z + a_0,
$$

is a polynomial of degree n≥2 such that either

 $a_n \ge a_{n-2} \ge \dots \ge a_{2\lambda+1} \le a_{2\lambda-1} \le \dots \le a_3 \le a_1 > 0$ and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_{2\lambda} \le a_{2\lambda-2} \le \dots \le a_2 \le a_0 > 0$, for some integer 2 $\lambda, 0 \leq \lambda \leq \frac{n-1}{2}$, if n is odd, or

$$
a_n \ge a_{n-2} \ge \dots \ge a_{2\lambda} \le a_{2\lambda-2} \le \dots \le a_2 \le a_0 > 0, \text{ and}
$$
\n
$$
a_{n-1} \ge a_{n-3} \ge \dots \ge a_{2\lambda+1} \le a_{2\lambda-1} \le \dots \le a_3 \le a_1 > 0, \text{ for some integer}
$$
\n
$$
\lambda, \ 0 \le \lambda \le \frac{n-2}{2} \text{ if } n \text{ is even then all the zeroes of } P(z) \text{ lie in the closed disk}
$$
\n
$$
\left| z + \frac{a_{n-1}}{a_n} \right| \le 1 + \frac{a_{n-1} + 2(a_0 + a_1 - (a_{2\lambda} + a_{2\lambda+1}))}{a_n} \tag{7}
$$

 The following result is obtained by applying Theorem 1.2 to the polynomial $P(tz)$:

Corollary 4: If

$$
P(z) = \sum_{j=0}^{n} a_j z^j
$$

is a polynomial of degree n≥2 such that for some t>0 either

$$
a_n t^n \ge a_{n-2} t^{n-2} \ge \dots \ge a_{2\lambda+1} t^{2\lambda+1} \le a_{2\lambda-1} t^{2\lambda-1} \le \dots \le a_3 t^3 \le a_1 t > 0, \text{ and}
$$
\n
$$
a_{n-1} t^{n-1} \ge a_{n-3} t^{n-3} \ge \dots \ge a_{2\lambda} t^{2\lambda} \le a_{2\lambda-2} t^{2\lambda-2} \le \dots \le a_2 t^2 \le a_0 > 0, \text{ for some integer}
$$
\n
$$
\lambda, 0 \le \lambda \le \frac{n-1}{2}, \text{ if } n \text{ is odd}
$$
\n
$$
a_n t^n \ge a_{n-2} t^{n-2} \ge \dots \ge a_{2\lambda} t^{2\lambda} \le a_{2\lambda-2} t^{2\lambda-2} \le \dots \le a_2 t^2 \le a_0 > 0, \text{ and}
$$
\n
$$
a_{n-1} t^{n-1} \ge a_{n-3} t^{n-3} \ge \dots \ge a_{2\lambda+1} t^{2\lambda+1} \le a_{2\lambda-1} t^{2\lambda-1} \le \dots \le a_3 t^3 \le a_1 t > 0, \text{ for some}
$$
\n
$$
a_{n-1} t^{n-1} \ge a_{n-3} t^{n-3} \ge \dots \ge a_{2\lambda+1} t^{2\lambda+1} \le a_{2\lambda-1} t^{2\lambda-1} \le \dots \le a_3 t^3 \le a_1 t > 0, \text{ for some}
$$
\n
$$
a_{n-1} t^{n-1} \ge a_{n-2} t^{n-2} \quad \text{if } n \text{ is even, then all the zeros of } P(z) \text{ lie in the closed}
$$
\n
$$
a_{n-1} t^{n-1} \ge a_{n-2} t^{n-2} \ge \dots \ge a_{2\lambda+1} t^{2\lambda+1} \le a_{2\lambda-1} t^{2\lambda-1} \le \dots \le a_3 t^3 \le a_1 t > 0, \text{ for some}
$$
\n
$$
a_{n-1} t^{n-1} \ge a_{n-3} t^{n-3} \ge \dots \ge a_{2\lambda+1} t^{2\lambda+1} \le a
$$

$$
\left| z + \frac{a_{n-1}}{a_n} \right| \le t + \frac{t^{n-1} a_{n-1} + 2(a_0 + a_1 t - t^{2\lambda} (a_{2\lambda} + a_{2\lambda + 1} t))}{t^{n-1} a_n}
$$
(8)

2. Proofs of the Theorems

Proof of Theorem 1.1: consider

$$
F(z) = (1-z2)P(z)
$$

= -a_nzⁿ⁺² - a_{n-1}zⁿ⁺¹ + (a_n - a_{n-2})zⁿ + ... + (a₃ - a₁)z³ + (a₂ - a₀)z² + a₁z + a₀,

For $|z|>1$, we have

 $1^{\mathcal{L}}$ \mathcal{u}_0 2 2 u_0 3 2/2 1 ... \mathfrak{u}_3 \mathfrak{u}_1 1 $F(z)| = |-a_n z^{n+2} - a_{n-1} z^{n+1} - k a_n z^n + a_n z^n + (k a_n - a_{n-2}) z^n + ... + (a_3 - a_1) z^3 + (a_2 - a_0) z^2 + a_1 z + a_2 z^n$ *n n n n n n n n* $=$ $-a_n z^{n+2} - a_{n-1} z^{n+1} - k a_n z^n + a_n z^n + (k a_n - a_{n-2}) z^n + ... + (a_3 - a_1) z^3 + (a_2 - a_0) z^2 + a_1 z +$ − +

$$
\geq |z|^{n} \left\{ |a_{n}z^{2} + a_{n-1}z + (k-1)a_{n}| - \left| \frac{(ka_{n} - a_{n-2}) + (a_{n-1} - a_{n-3})\frac{1}{z} + ... + (a_{3} - a_{1})\frac{1}{z^{n-3}}}{(a_{2} - a_{0})\frac{1}{z^{n-2}} + a_{1}\frac{1}{z^{n-1}} + a_{0}\frac{1}{z^{n}}} \right| \right\}
$$

$$
\geq \left| z^{2} + \frac{a_{n-1}}{a_{n}} z + (k-1) \right| - \frac{1}{\left| a_{n} \right|} \left\{ \left. \frac{(ka_{n} - a_{n-2}) + (a_{n-1} - a_{n-3}) \frac{1}{\left| z \right|} + \dots + (a_{3} - a_{1}) \frac{1}{\left| z \right|^{n-3}}}{\left| z \right|^{n-2}} + a_{1} \frac{1}{\left| z \right|^{n-1}} + a_{0} \frac{1}{\left| z \right|^{n}} \right\}
$$
\n
$$
> \left| z^{2} + \frac{a_{n-1}}{a_{n}} z + (k-1) \right| - (k + \frac{a_{n-1}}{a_{n}})
$$
\n
$$
> 0, \text{if}
$$
\n
$$
\left| z^{2} + \frac{a_{n-1}}{a_{n}} z + (k - 1) \right| > (k + \frac{a_{n-1}}{a_{n}})
$$

Hence all the zeros of F(z) whose modulus is greater than 1 lie in the region

$$
\left| z^{2} + \frac{a_{n-1}}{a_{n}} z + (k-1) \right| \leq (k + \frac{a_{n-1}}{a_{n}})
$$
\n(9)

But those zeros of $F(z)$ whose modulus is less than or equal to 1 already satisfy the inequality(9). Since all the zeros of $P(z)$ are also the zeros of $F(z)$, therefore it follows that all the zeros of P(z) lie in the region(9).

Let α and β be the roots of the quadratic $z^2 + \frac{a_{n-1}}{2}z + (k-1) = 0$ *a* $z^2 + \frac{a}{2}$ *n* $n-1$ _{z} + (k-1) = 0, therefore from(9), we have $|z-\alpha\|z-\beta|\leq k+\frac{a_{n-1}}{2}$. *n n a* $|z-\alpha| |z-\beta| \leq k++\frac{a_{n-1}}{a_n}$. which completes the proof of Theorem 1.1

Proof of Theorem 1.2: Consider

$$
F(z) = (1-z2)P(z)
$$

= -a_nzⁿ⁺² - a_{n-1}zⁿ⁺¹ + (a_n - a_{n-2})zⁿ + ... + (a₃ - a₁)z³ + (a₂ - a₀)z² + a₁z + a₀

therefore for $|z|>1$, we have

$$
|F(z)| = |-(a_n z^n + a_{n-1})z^{n+1} + (a_n - a_{n-2})z^n + ... + (a_3 - a_1)z^3 + (a_2 - a_0)z^2 + a_1 z + a_0|
$$

\n
$$
\ge |z^{n+1}| \left\{ |a_n z + a_{n-1}| - (|a_n - a_{n-2}| \frac{1}{|z|} + ... + |a_3 - a_1| \frac{1}{|z^{n-2}|} + |a_2 - a_0| \frac{1}{|z^{n-1}|} + |a_1| \frac{1}{|z^n|} + \frac{|a_0|}{|z^{n+1}|} \right\}
$$

\n
$$
> |z^{n+1}| \left\{ |a_n z + a_{n-1}| - (|a_n - a_{n-2}| + ... + |a_3 - a_1| + |a_2 - a_0| + |a_1| + |a_0|) \right\}
$$

\n
$$
= |z^{n+1}| \left\{ |a_n z + a_{n-1}| - (\sum_{j=0}^n |a_j - a_{j-2}| + |a_1| + |a_0|) \right\}
$$

\n
$$
= |z^{n+1}| \left\{ |a_n z + a_{n-1}| - (a_0 + a_1 + \sum_{k=1}^{\frac{n}{2}} |a_{2k} - a_{2k-2}| + \sum_{k=1}^{\frac{n-k}{2}} |a_{2k+1} - a_{2k-1}| \right\}
$$
 (10)

Assuming first that n is even then from (10), for $|z|=1$, we have

$$
|F(z)| > |z^{n+1}| \left\{ |a_n z + a_{n-1}| - (a_0 + a_1 + \sum_{k=1}^{\lambda} |a_{2k-2} - a_{2k}| + \sum_{k=\lambda+1}^{\frac{n}{2}} |a_{2k} - a_{2k-2}| + \sum_{k=\lambda+1}^{\frac{n-2}{2}} |a_{2k+1} - a_{2k-1}| \right\}
$$

$$
= |z^{n+1}| \Big\{ |a_n z + a_{n-1}| - 2(a_0 + a_1 - a_{2\lambda} - a_{2\lambda+1}) + a_n + a_{n-1} \Big\}
$$

 $>0,$ if

$$
\left| z + \frac{a_{n-1}}{a_n} \right| > 1 + \frac{a_{n-1} + 2(a_0 + a_1 - a_{2\lambda} - a_{2\lambda+1})}{a_n} \tag{11}
$$

In case n is odd it can be easily seen that $|P(z)|>0$ if (11) holds. Hence all those zeros of $P(z)$ whose modulus is greater than 1 lie in the circle

$$
\left| z + \frac{a_{n-1}}{a_n} \right| > 1 + \frac{a_{n-1} + 2(a_0 + a_1 - a_{2\lambda} - a_{2\lambda+1})}{a_n}
$$
\n(12)

But all those zeros of P(z) whose modulus is less than or equal to 1 already satisfy (12). Therefore it follows that all the zeros of P(z) lie in the circle(12). which proves Theorem(1.2).

Refrences:

1.A.Aziz and Q.G.Mohammad; Zero Free Regions for polynomials

 and some Generalizations of Eneström-Kakeya Theorem ,Canad.Math,Bull.27(1984),265-272.

2.A.Aziz and B.A Zargar; Some Extensions of Eneström-Kakeya

Theorem, Glasnick Matematicki31(51)(1996),239-244.

3. A.Aziz and B.A Zargar; Some Refinements of Eneström- Kakey Theorem , Analysis in theory and Applications, 23(2007)129-137.

- 4. K.K.Dewan and N.K Govil; On the Eneström- Eneström-Kakeya Theorem, J.Approx. theory 42(1984)239-244.
- 5. N.K.Govil and Q.I.Rahman; On the Eneström-Kakeya Theorem Tohoku Math.j . 20(1968),126-136.
- 6. M.Marden;,Geometry of polymonials, Math surveys No .3

Amer.Math.Soc..providence)1966.

- 7. G.V.Milovanovic, D.S.Mitrinovic and Th.M.Rassias; Topics in polynomials, Extremal polynomials,.Inequalities,zeros (Singapore,world scientific)(1994).
- 8. Q.I.Rahman and G.Schmeisser Analytic theory of polynomials,Clarendon press-oxford, 2002.,

*****.